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Introduction 
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Puns are a linguistic tool that exploit phonetic or semantic ambiguity to create humor through dual interpretations.

They are widely used in entertainment, advertising, and literature for engagement.

Challenges
Generating humor in code-mixed texts is harder due to the need for phonetic alignment and contextual coherence

across languages.

Current research lacks exploration into pun generation in low-resource, code-mixed settings such as Hindi-English

text.

Background



Contribution
Propose three novel methods for pun generation on word pairs using Large Language Models.

Explore the performance of pre-trained multilingual models (XLM-R, mBERT) on detecting puns within code-mixed

contexts.

Introduce a new dataset, HECoP, containing 2,000 machine-generated sentences with human annotations for

humor and naturalness.

Develop a structured pun generation pipeline to generate puns from a single input word.

Introduction 
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Related Work
Early systems like JAPE-1 (Binsted and Ritchie, 1994)

relied on manually crafted templates to generate puns

based on phonetic or semantic similarity

T-Peg (Hong and Ong, 2008) automated the creation of

templates from human-generated puns.

Yu et al. 2018 introduced a neural language model capable of

generating homographic puns without specialized training data.

Sun et al. 2019 proposed a system with separate modules for

pun word retrieval and generation, emphasizing contextual

relevance.

AmbiPun(2022) used dictionary search and one-shot GPT-3 for

creating ambiguous contexts, achieving a 52% pun success rate.

Template-Based Approaches Neural-Based Approaches 
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Task Formulation
A pun is a form of wordplay in which one sign (e.g., a word or a phrase) suggests two or more meanings by exploiting

polysemy, homonymy, or phonological similarity to another sign, for an intended humorous or rhetorical effect.

My watch is stuck between 2 and 2.30. It's a do

or dhai situation. Here the pun word is dhai and

the alternative word is die. 

Humor arises from the phonetic similarity

between the Hindi word dhai (which means

two and a half, referencing 2:30 in this

context) and the English word die.
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Steps in Pun Generation
Identification of similar sounding words across a language pair

Generation of candidate sentences with alternate word A   

Replacement of A   with P   within these candidate sentences

w

w w
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Pun-Alternate Word list Collection
Words were transcribed into IPA using the epitrans library.

American English IPA symbols were mapped to Indian English IPA which Improved

the relevance of phonetic matches between Hindi and English words.

IPA Transcriptions

Edit Distance
Employed Levenshtein edit distance with custom substitution costs based on

phonetic features. 

The insertion and and deletion cost was set to infinity.

Pairs with edit distance less than equal to 1 were collected.

Eq: Custom Substitution cost

Tab: Word Pairs Collected



1. Contextually Aligned Pun Generation

GPT-4o is prompted to generate five sentences, each ending with the English word 
Each sentence must include a context word        , the English translation of       . 
For                         the prompt is structured as follows: Generate 5 creative Hindi-English code-mixed sentences ending
with      . Include         as context in each sentence.
Additional filtering phase employed to ensure fluent puns:

Part-of-Speech compatibility: ensuring.         and        share the same POS tag.
Candidates are prioritized based on the placement of          at the sentence's end.

Pun Generation Approaches

Example

Tuple                              = (डेढ़(one and a half), dead, one and a half)
Prompt: Generate 5 creative Hindi-English sentences ending with the word ‘dead’. Have the word ‘one and a half’ as a
context in each of these sentences.
Final Pun: मैने(I) one and a half litre दधू ख़रीदा(milk buy), but when i opened it, it was already डेढ़(one and a half)." 
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2. Question-Answer Pun Generation

Structured approach used to generate puns in question answer format.
The process consists of three key stages: 

Generating a short phrase containing 
Replacing         with         in the generated phrase
Formulating a question based on the transformed phrase.

Pun Generation Approaches

Example

Pun Alternate word pair                  = (गाय(cow), guy)

Generated Small Phrase: A cool guy
Replaced Pun Word: A cool गाय(cow)
Generated Question: What do you call a cow wearing sunglasses?
Generated Translated Question: Sunglasses पहने �ए(wearing) cow को आप �ा कहते ह�?(what do you call)
Final Pun: Sunglasses पहने �ए(wearing) cow को आप �ा कहते ह�(what do you call)? A cool गाय(cow).
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3. Subject-Masked Pun Generation

Generate puns by incorporating a subject-masking step, 
The process consists of three key stages: 

Generating a sentence with 
Replacing the        with 
Masking and replacement of the subject to add relevance to the pun.

Example

Pun Alternate word pair                  = (लाख(lakh), luck)

Generated Short Sentence: The man attributed all his success to luck
Replaced Alternate Word: The man attributed all his success to लाख(lakh)
Masked Subject: [MASK] attributed all his success to लाख(lakh)
Final Pun Sentence: The lucky अमीर(rich) businessman attributed all his success to लाख(lakh)
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Pun Generation Approaches



OBJECTIVES

Pun Success Funniness Acceptability

Binary metric assessing
successful incorporation of
wordplay (Yes/No).

Assessed on a 5-point Likert
scale from “Not Funny” to
“Hilarious.”

Assessed on 5-point scale from
“Definitely Unacceptable” to
“Definitely Acceptable and Very
Fluent.”

Thynk UnlimitedPun Evaluation Criteria
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Evaluation Results

Tab: Comparison of Success percentage(Suc%), Mean Funniness score rated out
of 5(Fun.), and Mean Acceptability score rated out of 5(Accep.) for different pun
generation methods
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Task-Specific Fine Tuning

 NLI-Based Models

Transfer Learning + Task-Specific Fine Tuning

Few-Shot Learning

Encoder-based models (e.g., XLM-R, mBERT) fine-
tuned for pun detection.

NLI-based models, including BART-nli, were assessed
for their capacity to produce sentence embeddings,
which may help capture semantic nuances crucial for
understanding puns.

Encoder-based models continued pre-trained on
large scale code-mixed corpora and then fine-tuned
for pun detection.

Both decoder-only models and encoder-decoder
models were employed using few-shot learning to
detect puns leveraging minimal labeled data.

Pun Detection
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Pun Detection Results

Tab: Performance comparison of different models for pun detection, grouped by model type
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Pun Generation Pipeline
01

Identifies English words phonetically aligned with the input Hindi pun word.
Utilizes the custom phonetic edit distance metric proposed to select top 5 candidates.

Phonetically Similar Word Selection:

02

A regression model to compute a compatibility score (0-4) for pun-alternate word pairs.
Feature set includes:

BERT embeddings for        and       .
Part-of-speech tags encoded as one-hot vectors, based on the universal POS tag set

Compatibility Scoring Model:

03

Generate candidate sentences using obtained word pairs and the three methods described previously.
Uses XLM-R based pun classifier to filter and select the most effective pun sentence based on confidence score.

Sentence Generation and Filtering:
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Pun Generation Pipeline
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Evaluation
Our pun generation pipeline was compared against a baseline model in which GPT-4o is prompted directly to

generate a pun using only the given pun word        .

Annotators were asked to rate the funniness of each output and determine which sentence was the better

pun overall.

Evaluation was done on 50 samples.



Future Work and Limitations
Future Work

Expand dataset to include other code-mixed language pairs.

Try advanced frameworks to detect and generate puns.
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Limitations
The reliance on robust models like GPT-4o may be less effective for other low-resource languages

Challenges in applying this approach to low-resource languages due to unavailable phonetic resources.

Current focus excludes subword-level puns and complex wordplay.
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