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Introduction

= Background

e Puns are a linguistic tool that exploit phonetic or semantic ambiguity to create humor through dual interpretations.

* They are widely used in entertainment, advertising, and literature for engagement.

= Challenges

e Generating humor in code-mixed texts is harder due to the need for phonetic alignment and contextual coherence
across languages.
e Current research lacks exploration into pun generation in low-resource, code-mixed settings such as Hindi-English

text.




Introduction

= Contribution

* Propose three novel methods for pun generation on word pairs using Large Language Models.

 Explore the performance of pre-trained multilingual models (XLM-R, mBERT) on detecting puns within code-mixed
contexts.

* Introduce a new dataset, HECoP, containing 2,000 machine-generated sentences with human annotations for
humor and naturalness.

* Develop a structured pun generation pipeline to generate puns from a single input word.




Related Work

E) Template-Based Approaches

Early systems like JAPE-1 (Binsted and Ritchie, 1994)

relied on manually crafted templates to generate puns

based on phonetic or semantic similarity

T-Peg (Hong and Ong, 2008) automated the creation of

templates from human-generated puns.

Neural-Based Approaches

Yu et al. 2018 introduced a neural language model capable of

generating homographic puns without specialized training data.

Sun et al. 2019 proposed a system with separate modules for
pun word retrieval and generation, emphasizing contextual

relevance.

AmbiPun(2022) used dictionary search and one-shot GPT-3 for

creating ambiguous contexts, achieving a 52% pun success rate.



Task Formulation

A pun is a form of wordplay in which one sign (e.g, a word or a phrase) suggests two or more meanings by exploiting

polysemy, homonymy, or phonological similarity to another sign, for an intended humorous or rhetorical effect.

: . Humor arises from the phonetic similarit
My watch is stuck between 2 and 2.30. It's a do P Y

between the Hindi word dhai (which means

or dhai situation. Here the pun word is dhai and

: S two and a half, referencing 2:30 in this
the alternative word is die.

context) and the English word die.




Steps In Pun Generation

<) ldentification of similar sounding words across a language pair

Generation of candidate sentences with alternate word A,

> Replacement of A, with P, within these candidate sentences




Pun-Alternate Word list Gollection

IPA Transcriptions

Hindi IPA English IPA Edit
e Words were transcribed into IPA using the epitrans library. e (pipal) /piipol/ people /pipal/ O
* American English IPA symbols were mapped to Indian English IPA which Improved e (dﬁl) /dil/ dfj'al /di:l/ 0
fSh (bik) /bik/ big /big/ 0
the relevance of phonetic matches between Hindi and English words. 9t (shock)  /fo:k/  shack  /fzk/ 1
ﬂ?:@[ (gusse) /gusse/ goose  /guis/ oo

* Employed Levenshtein edit distance with custom substitution costs based on

Tab: Word Pairs Collected

phonetic features. (0, if z and y are same phones ,

) . ) o , if z and y are allophones,
* The insertion and and deletion cost was set to infinity.

e Pairs with edit distance less than equal to 1 were collected. , if z and y are voiced /unvoiced pairs,

0

Csub(Z,y) = ¢ 0, if z and y are long/short vowel pairs,
0
1

, otherwise.

EqQ: Custom Sulbstitution cost




Pun Generation Approaches
1. Contextually Aligned Pun Generation

GPT-4o0 is prompted to generate five sentences, each ending with the English word A4,
Each sentence must include a context word C',, the English translation of P, .
For (A, Py, Cy) the prompt is structured as follows: Generate 5 creative Hindi-English code-mixed sentences ending
with A,. Include C',, as context in each sentence.
Additional filtering phase employed to ensure fluent puns:
o Part-of-Speech compatibility: ensuring. P, and A, share the same POS tag.
o Candidates are prioritized based on the placement of P,, atthe sentence’s end.

Tuple (Py, Ay, Cy) = (38(one and a half), dead, one and a half)

Prompt: Generate 5 creative Hindi-English sentences ending with the word ‘dead’. Have the word ‘one and a half’ as a
context in each of these sentences.

Final Pun: 315i(1) one and a hallf litre &I FdlaT(milk buy), but when i opened it, it was already $&(one and a half)."




Pun Generation Approaches

2. Question-Answer Pun Generation

e Structured approach used to generate puns in question answer format.
* The process consists of three key stages:

o Generating a short phrase containing 4,

o Replacing A, with P, in the generated phrase

o Formulating a question based on the transformed phrase.

Pun Alternate word pair (Py, A) = (AT (cow), guy)

Generated Small Phrase: A cool guy

Replaced Pun Word: A cool I (cow)

Generated Question: What do you call a cow wearing sunglasses?

Generated Translated Question: Sunglasses Ugal E(wearing) cow 1 310 &1 dhgd &2(what do you call)
Final Pun: Sunglasses Ugal gE(wearing) cow I 31T &T dhgd &(what do you call)? A cool T (cow).




Pun Generation Approaches

3. Subject-Masked Pun Generation

e Generate puns by incorporating a subject-masking step,
* The process consists of three key stages:
o Generdating a sentence with A4,
o Replacing the Ay, with P,
o Masking and replacement of the subject to add relevance to the pun.

Pun Alternate word pair (P, A,,) = (31&(lakh), luck)

Generated Short Sentence: The man attributed all his success to luck

Replaced Alternate Word: The man attributed all his success to > (lakh)

Masked Subject: [MASK]| attributed all his success to @& (lakh)

Final Pun Sentence: The lucky ?rl'clﬂ'd'(rich) businessman attributed all his success to >T&E (lakh)




Pun Evaluation Criteria

Pun Success

Binary metric assessing
successful incorporation of
wordplay (Yes/No).

Funniness

Assessed on a 5-point Likert
scale from “Not Funny” to
“Hilarious.”

Acceptability

Assessed on 5-point scale from
“Definitely Unacceptable” to
“Definitely Acceptable and Very
Fluent.”




Evaluation Resulits

Model Suc(%) Fun. Accep.
Contextually Aligned 38.8 LSl 4.32
Question-Answer 62.6 2.59 4.28
Subject-Masked 43 2.24 4.54
Baseline 19.8 217 4.48

Tab: Comparison of Success percentage(Suc%), Mean Funniness score rated out
of 5(Fun.), and Mean Acceptability score rated out of 5(Accep.) for different pun
generation methods




Task-Specific Fine Tuning

Encoder-based models (e.g, XLM-R, mBERT) fine-
tuned for pun detection.

NLI-Based Models

NLI-based models, including BART-nli, were assessed
for their capacity to produce sentence embeddings,
which may help capture semantic nuances crucial for

understanding puns.

Pun Detection

Transfer Learning - Task-Specific Fine Tuning

Encoder-based models continued pre-trained on
large scale code-mixed corpora and then fine-tuned

for pun detection.

Few-Shot Learning

Both decoder-only models and encoder-decoder
models were employed using few-shot learning to
detect puns leveraging minimal labeled data.



Pun Detection Results

| Validation | Test
| F1 Precision Recall Accuracy | F1  Precision Recall Accuracy

Model

1. Task-Specific Fine Tuning
XLM-R (Conneau et al., 2020)

E'?.S; 8 59.5 1.16G I‘i!-'l'.l];;,q,]q; Eg'au[l,‘,iﬁ-
mBERT (Devlin et al., 2019) 6528180 65417  66.00m 66.02 m
IndicBERT {Kakwani et al., Iﬂlﬂ} 6l .7413,1.';5 61.313,';.'1 ﬁz.gu,“;{ ﬁ:.gu,53

2. Transfer Learning + Task-Specific Fine Tuning

67.112 68.0;,4 690,95 69.0) 5
634178 635182 640155 64.0;65
62.05 11 624277 635359 63.52 59

Hing-m BERT {Nﬂ.}’ﬂh and Joshi, 2[}2241] 64.59_1;5 65.3 .57 65.21_{;5 65.21_1;5 65.1 1.74 ﬁ'ﬁ.‘iu_m ﬁ5,42_ 14 6'5.41 19
Hing-Robera (Nayak and Joshi, 2022a) | 6410540 64545 Oddpoq 64450y | 639,405 65055 641146 641148
GCM-XLMR (Kodali et al., 2024) 61.63200 632212 639150 639150 |60.1107 622060 626063 626063
GCM-mBERT {Kﬂdﬂ]l etal., 2(:'24} 62.63 .39 63.0 1.5 ﬁlﬂ;,,n 62.3(.,?; 61 .3"_',1; 61 .?u_m; 61 .3“_."; 61 ju_.m
-'EI.CL':{LMR {Dﬂ.ﬁ et -HI... EDEB'} 64.'}1".7“ 5-4.2"..” 54.9[;.52 M.gulﬁg 63 .314){. 53.31 i1 64.51 15 M.Sjl 15
ACL-mBERT {DES et al., 2023) 59.973_5;5 ﬁﬂ.d-_u_-_.m 6l .ﬁ:{_.n-g 61 .ﬁ;{,_ng 6l .33_55 6l .Tg_g::_- ﬁlﬁi_."; 152.61_.“;
3. NLI-Based Models

BAET—]HI.‘EE—I‘IH {LEWiS- et al., 2{]2[}} ﬁ“-.gﬂL.ﬂg 65.5 1.740 56.21,1]5 ﬁﬁ.21,1;5 ﬁlﬂllg}z 51.51 11 ﬁj‘.ﬁj_‘jﬁ ﬁlﬁvg_gﬂ
roberta-large-nli (Liu et al., 2019) 6273229 627240 633276 633276 | 631159 631185 63.6027 63.6)27
4. Few-Shot Learning

IndlﬂBAET [Dﬂ.hrﬂ &l ﬂ.l.. EUEE] 54.5;|‘” 5¢.5|“'|‘|"1 55‘31.?3 55‘31.?11- 53.ﬁl.w 53.[1|E-,;, 53.91.“] Sj‘gl.ﬂl
mBART (Liu et al., 2020) 55.5“.;] 55.21_74 54.3113 54.31;;1 5'1.31_73 54.[}1_71 54.51_74 54.6-1_“
Llama-3.2-1B {Tl.'l'l.l‘i"ml'l et al., EUE"!-} 5‘].5-_},13[} 50.1 3 A6 53.511]" 53.511]” 51 5,:!},3 51,21.11;, 56.51_;1“ 55511&5
Airavata [Gﬂ]ﬂ. etal., Eﬂ24} 51 '92'.7!'} 51 'E-'l.ﬂ 56.71." Sﬁ.Tl.u lﬁﬂ..‘iﬂ. 11 ﬁﬂ.?zl:m 61. I-E..'H 61. I-:E..'l-l

Tab: Performance comparison of different models for pun detection, grouped by model type




Pun Generation Pipeline

° Phonetically Similar Word Selection:

e |dentifies English words phonetically aligned with the input Hindi pun word.
e Utilizes the custom phonetic edit distance metric proposed to select top 5 candidates.

@ Compatibility Scoring Model:

e Aregression model to compute a compatibility score (0-4) for pun-alternate word pairs.

e Feature setincludes:
o BERT embeddings for P, and A,,.
o Part-of-speech tags encoded as one-hot vectors, based on the universal POS tag set

@ Sentence Generation and Filtering:

e Generate candidate sentences using obtained word pairs and the three methods described previously.
e Uses XLM-R based pun classifier to filter and select the most effective pun sentence based on confidence score.




Pun Generation Pipeline

Input
Word Pair Selection
1. word 1. Says
- * 2. Sauce
3. Sees
4, Saws
5 Se
List of all - |
English Words List of Phonetically
Selector Similar English Words Compatibility Scorer
Pun Generation
Confidence
Score
"What do you call ?!lr & 13#
ﬁlﬂ'm Simon @ 919 -
T &7
Simon TH"
Generated Pun

Pun Generation Methods

Pun Classifier




Evaluation

e Our pun generation pipeline was compared against a baseline model in which GPT-40 is prompted directly to

generate a pun using only the given pun word P, .

e Annotators were asked to rate the funniness of each output and determine which sentence was the better

pun overall.

e Evaluation was done on 50 samples.

Model Win Rate (%) Avg. Funniness

Proposed Model 67.65 1.79
Baseline Model 92.3 0.91




Future Work and Limitations

Future Work

* Expand dataset to include other code-mixed language pairs.

* Try advanced frameworks to detect and generate puns.

Limitations

* The reliance on robust models like GPT-40 may be less effective for other low-resource languages
e Challenges in applying this approach to low-resource languages due to unavailable phonetic resources.

e Current focus excludes subword-level puns and complex wordplay.
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