BRIDGING LAUGHTER AGROSS
LANGUAGES: GENERATION OF HINDI-
ENGLISH GODE-MIXED PUNS

15T WORKSHOP ON GOMPUTATIONAL HUMOR (GHUM 2025)

Likhith Asapu, llIT Hyderabad
Prashant Kodali, IIIT Hyderabad
Ashna Dug, IlIT Hyderabad

Kapil Rajesh Kavitha, llIT Hyderabad
Manish Shrivastava, IlIT Hyderabad

The 31st International

Conference on Computational
Linguistics

COLING 2025 « Abu Dhabi

Overview

o [ntroduction
o Related Work

e Methodology

o Pun Generation (Word Pair)

o Annotation and Pun Detection

o Pun Generation Pipeline (Single Word)
o Future Work and Limitation

Introduction

= Background

e Puns are a linguistic tool that exploit phonetic or semantic ambiguity to create humor through dual interpretations.

* They are widely used in entertainment, advertising, and literature for engagement.

= Challenges

e Generating humor in code-mixed texts is harder due to the need for phonetic alignment and contextual coherence
across languages.
e Current research lacks exploration into pun generation in low-resource, code-mixed settings such as Hindi-English

text.

Introduction

= Contribution

* Propose three novel methods for pun generation on word pairs using Large Language Models.

 Explore the performance of pre-trained multilingual models (XLM-R, mBERT) on detecting puns within code-mixed
contexts.

* Introduce a new dataset, HECoP, containing 2,000 machine-generated sentences with human annotations for
humor and naturalness.

* Develop a structured pun generation pipeline to generate puns from a single input word.

Related Work

E) Template-Based Approaches

Early systems like JAPE-1 (Binsted and Ritchie, 1994)

relied on manually crafted templates to generate puns

based on phonetic or semantic similarity

T-Peg (Hong and Ong, 2008) automated the creation of

templates from human-generated puns.

Neural-Based Approaches

Yu et al. 2018 introduced a neural language model capable of

generating homographic puns without specialized training data.

Sun et al. 2019 proposed a system with separate modules for
pun word retrieval and generation, emphasizing contextual

relevance.

AmbiPun(2022) used dictionary search and one-shot GPT-3 for

creating ambiguous contexts, achieving a 52% pun success rate.

Task Formulation

A pun is a form of wordplay in which one sign (e.g, a word or a phrase) suggests two or more meanings by exploiting

polysemy, homonymy, or phonological similarity to another sign, for an intended humorous or rhetorical effect.

: . Humor arises from the phonetic similarit
My watch is stuck between 2 and 2.30. It's a do P Y

between the Hindi word dhai (which means

or dhai situation. Here the pun word is dhai and

: S two and a half, referencing 2:30 in this
the alternative word is die.

context) and the English word die.

Steps In Pun Generation

<) ldentification of similar sounding words across a language pair

Generation of candidate sentences with alternate word A,

> Replacement of A, with P, within these candidate sentences

Pun-Alternate Word list Gollection

IPA Transcriptions

Hindi IPA English IPA Edit
e Words were transcribed into IPA using the epitrans library. e (pipal) /piipol/ people /pipal/ O
* American English IPA symbols were mapped to Indian English IPA which Improved e (dﬁl) /dil/ dfj'al /di:l/ 0
fSh (bik) /bik/ big /big/ 0
the relevance of phonetic matches between Hindi and English words. 9t (shock) /fo:k/ shack /fzk/ 1
ﬂ?:@[(gusse) /gusse/ goose /guis/ oo

* Employed Levenshtein edit distance with custom substitution costs based on

Tab: Word Pairs Collected

phonetic features. (0, if z and y are same phones ,

) .) o , if z and y are allophones,
* The insertion and and deletion cost was set to infinity.

e Pairs with edit distance less than equal to 1 were collected. , if z and y are voiced /unvoiced pairs,

0

Csub(Z,y) = ¢ 0, if z and y are long/short vowel pairs,
0
1

, otherwise.

EqQ: Custom Sulbstitution cost

Pun Generation Approaches
1. Contextually Aligned Pun Generation

GPT-4o0 is prompted to generate five sentences, each ending with the English word A4,
Each sentence must include a context word C',, the English translation of P, .
For (A, Py, Cy) the prompt is structured as follows: Generate 5 creative Hindi-English code-mixed sentences ending
with A,. Include C',, as context in each sentence.
Additional filtering phase employed to ensure fluent puns:
o Part-of-Speech compatibility: ensuring. P, and A, share the same POS tag.
o Candidates are prioritized based on the placement of P,, atthe sentence’s end.

Tuple (Py, Ay, Cy) = (38(one and a half), dead, one and a half)

Prompt: Generate 5 creative Hindi-English sentences ending with the word ‘dead’. Have the word ‘one and a half’ as a
context in each of these sentences.

Final Pun: 315i(1) one and a hallf litre &I FdlaT(milk buy), but when i opened it, it was already $&(one and a half)."

Pun Generation Approaches

2. Question-Answer Pun Generation

e Structured approach used to generate puns in question answer format.
* The process consists of three key stages:

o Generating a short phrase containing 4,

o Replacing A, with P, in the generated phrase

o Formulating a question based on the transformed phrase.

Pun Alternate word pair (Py, A) = (AT (cow), guy)

Generated Small Phrase: A cool guy

Replaced Pun Word: A cool I (cow)

Generated Question: What do you call a cow wearing sunglasses?

Generated Translated Question: Sunglasses Ugal E(wearing) cow 1 310 &1 dhgd &2(what do you call)
Final Pun: Sunglasses Ugal gE(wearing) cow I 31T &T dhgd &(what do you call)? A cool T (cow).

Pun Generation Approaches

3. Subject-Masked Pun Generation

e Generate puns by incorporating a subject-masking step,
* The process consists of three key stages:
o Generdating a sentence with A4,
o Replacing the Ay, with P,
o Masking and replacement of the subject to add relevance to the pun.

Pun Alternate word pair (P, A,,) = (31&(lakh), luck)

Generated Short Sentence: The man attributed all his success to luck

Replaced Alternate Word: The man attributed all his success to > (lakh)

Masked Subject: [MASK]| attributed all his success to @& (lakh)

Final Pun Sentence: The lucky ?rl'clﬂ'd'(rich) businessman attributed all his success to >T&E (lakh)

Pun Evaluation Criteria

Pun Success

Binary metric assessing
successful incorporation of
wordplay (Yes/No).

Funniness

Assessed on a 5-point Likert
scale from “Not Funny” to
“Hilarious.”

Acceptability

Assessed on 5-point scale from
“Definitely Unacceptable” to
“Definitely Acceptable and Very
Fluent.”

Evaluation Resulits

Model Suc(%) Fun. Accep.
Contextually Aligned 38.8 LSl 4.32
Question-Answer 62.6 2.59 4.28
Subject-Masked 43 2.24 4.54
Baseline 19.8 217 4.48

Tab: Comparison of Success percentage(Suc%), Mean Funniness score rated out
of 5(Fun.), and Mean Acceptability score rated out of 5(Accep.) for different pun
generation methods

Task-Specific Fine Tuning

Encoder-based models (e.g, XLM-R, mBERT) fine-
tuned for pun detection.

NLI-Based Models

NLI-based models, including BART-nli, were assessed
for their capacity to produce sentence embeddings,
which may help capture semantic nuances crucial for

understanding puns.

Pun Detection

Transfer Learning - Task-Specific Fine Tuning

Encoder-based models continued pre-trained on
large scale code-mixed corpora and then fine-tuned

for pun detection.

Few-Shot Learning

Both decoder-only models and encoder-decoder
models were employed using few-shot learning to
detect puns leveraging minimal labeled data.

Pun Detection Results

| Validation | Test
| F1 Precision Recall Accuracy | F1 Precision Recall Accuracy

Model

1. Task-Specific Fine Tuning
XLM-R (Conneau et al., 2020)

E'?.S; 8 59.5 1.16G I‘i!-'l'.l];;,q,]q; Eg'au[l,‘,iﬁ-
mBERT (Devlin et al., 2019) 6528180 65417 66.00m 66.02 m
IndicBERT {Kakwani et al., Iﬂlﬂ} 6l .7413,1.';5 61.313,';.'1 ﬁz.gu,“;{ ﬁ:.gu,53

2. Transfer Learning + Task-Specific Fine Tuning

67.112 68.0;,4 690,95 69.0) 5
634178 635182 640155 64.0;65
62.05 11 624277 635359 63.52 59

Hing-m BERT {Nﬂ.}’ﬂh and Joshi, 2[}2241] 64.59_1;5 65.3 .57 65.21_{;5 65.21_1;5 65.1 1.74 ﬁ'ﬁ.‘iu_m ﬁ5,42_ 14 6'5.41 19
Hing-Robera (Nayak and Joshi, 2022a) | 6410540 64545 Oddpoq 64450y | 639,405 65055 641146 641148
GCM-XLMR (Kodali et al., 2024) 61.63200 632212 639150 639150 |60.1107 622060 626063 626063
GCM-mBERT {Kﬂdﬂ]l etal., 2(:'24} 62.63 .39 63.0 1.5 ﬁlﬂ;,,n 62.3(.,?; 61 .3"_',1; 61 .?u_m; 61 .3“_."; 61 ju_.m
-'EI.CL':{LMR {Dﬂ.ﬁ et -HI... EDEB'} 64.'}1".7“ 5-4.2"..” 54.9[;.52 M.gulﬁg 63 .314){. 53.31 i1 64.51 15 M.Sjl 15
ACL-mBERT {DES et al., 2023) 59.973_5;5 ﬁﬂ.d-_u_-_.m 6l .ﬁ:{_.n-g 61 .ﬁ;{,_ng 6l .33_55 6l .Tg_g::_- ﬁlﬁi_."; 152.61_.“;
3. NLI-Based Models

BAET—]HI.‘EE—I‘IH {LEWiS- et al., 2{]2[}} ﬁ“-.gﬂL.ﬂg 65.5 1.740 56.21,1]5 ﬁﬁ.21,1;5 ﬁlﬂllg}z 51.51 11 ﬁj‘.ﬁj_‘jﬁ ﬁlﬁvg_gﬂ
roberta-large-nli (Liu et al., 2019) 6273229 627240 633276 633276 | 631159 631185 63.6027 63.6)27
4. Few-Shot Learning

IndlﬂBAET [Dﬂ.hrﬂ &l ﬂ.l.. EUEE] 54.5;|‘” 5¢.5|“'|‘|"1 55‘31.?3 55‘31.?11- 53.ﬁl.w 53.[1|E-,;, 53.91.“] Sj‘gl.ﬂl
mBART (Liu et al., 2020) 55.5“.;] 55.21_74 54.3113 54.31;;1 5'1.31_73 54.[}1_71 54.51_74 54.6-1_“
Llama-3.2-1B {Tl.'l'l.l‘i"ml'l et al., EUE"!-} 5‘].5-_},13[} 50.1 3 A6 53.511]" 53.511]” 51 5,:!},3 51,21.11;, 56.51_;1“ 55511&5
Airavata [Gﬂ]ﬂ. etal., Eﬂ24} 51 '92'.7!'} 51 'E-'l.ﬂ 56.71." Sﬁ.Tl.u lﬁﬂ..‘iﬂ. 11 ﬁﬂ.?zl:m 61. I-E..'H 61. I-:E..'l-l

Tab: Performance comparison of different models for pun detection, grouped by model type

Pun Generation Pipeline

° Phonetically Similar Word Selection:

e |dentifies English words phonetically aligned with the input Hindi pun word.
e Utilizes the custom phonetic edit distance metric proposed to select top 5 candidates.

@ Compatibility Scoring Model:

e Aregression model to compute a compatibility score (0-4) for pun-alternate word pairs.

e Feature setincludes:
o BERT embeddings for P, and A,,.
o Part-of-speech tags encoded as one-hot vectors, based on the universal POS tag set

@ Sentence Generation and Filtering:

e Generate candidate sentences using obtained word pairs and the three methods described previously.
e Uses XLM-R based pun classifier to filter and select the most effective pun sentence based on confidence score.

Pun Generation Pipeline

Input
Word Pair Selection
1. word 1. Says
- * 2. Sauce
3. Sees
4, Saws
5 Se
List of all - |
English Words List of Phonetically
Selector Similar English Words Compatibility Scorer
Pun Generation
Confidence
Score
"What do you call ?!lr & 13#
ﬁlﬂ'm Simon @ 919 -
T &7
Simon TH"
Generated Pun

Pun Generation Methods

Pun Classifier

Evaluation

e Our pun generation pipeline was compared against a baseline model in which GPT-40 is prompted directly to

generate a pun using only the given pun word P, .

e Annotators were asked to rate the funniness of each output and determine which sentence was the better

pun overall.

e Evaluation was done on 50 samples.

Model Win Rate (%) Avg. Funniness

Proposed Model 67.65 1.79
Baseline Model 92.3 0.91

Future Work and Limitations

Future Work

* Expand dataset to include other code-mixed language pairs.

* Try advanced frameworks to detect and generate puns.

Limitations

* The reliance on robust models like GPT-40 may be less effective for other low-resource languages
e Challenges in applying this approach to low-resource languages due to unavailable phonetic resources.

e Current focus excludes subword-level puns and complex wordplay.

THANK YOU

For the Attention

